SF 298 MASTER COPY

KEEP THIS COPY FOR REPRODUCTION PURPOSES

REPORT DOCUMENTATION PAGE

Form Approved
OMB NO. 0704-0188

Public reporting buraen for this collection of information is estimated to average 1 hour per response. including the time for reviewing instructions. searching existing data sources,
gathering and maintaining the data needed. and completing and reviewing the collection of information. Send comment regarding this burden estmates or any other aspact of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, OC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

March 1, 1996 7

3. REPORT JTYPE AND DATES COVERED

S Qundl- 14 ec 95

4. TITLE AND SUBTITLE

A Scalable Parallel Library for Numerical Linear Algebra

5. FUNDING NUMBERS

6. AUTHOR(S)
Jack J. Dongarra

DaAco3-91-C-0047

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(ES)
University of Tennessee
Department of Computer Science
107 Ayres Hall)
Knoxville, TN 37996-1301

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U.S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709-2211

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

AR 39113 SE-MA

1

-

. SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as
an official Department of the Army position, policy or decision, unless so designated by other documentation.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12 b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

structure for building parallel libraries.

9960524 182

This report details the main technical results of the research project "A ‘scalable parallel library for
nurerical linear algebra," and constitutes the final report ‘for this projeci:. The research led to the
development of a substantial body of software, both in the area of parallel linear algebra, and in infra-
The main parallel software libraries produced were ScalAPACK
for dense linear algebra, ARPACK for large-scale eigenproblems, and CAPSS for solving sparse linear
systems. The project also played a central role in initiating and supporting the creation of the MPI
message passing interface. In addition, the prcject has promoted the use of software templates as
building blocks for iterative methods, and project personnel have co-authored a book on this subject.

14. SUBJECT TERMS

numerical linear algebra, parallel software libraries, dense linear
systems, large-scale eigenproblems, sparse linear systems;

15. NUMBER IF PAGES
41

16. PRICE CODE

OR REPORT
UNCLASSIFIED

OF THIS PAGE
UNCLASSIFIED

OF ABSTRACT

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT

UNCLASSIFIED UL

NSN 7540-01-280-5500

DTIC QUALITY INgPEGTRED)

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18
298-102

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
instructions for filling in each block of the form follow. It is important to stay within the lines to meet

optical scanning requirements.

Block 1. Agency Use Only (Leave blank)

Block 2. Report Date. Full publication date
including day, month, and year, if available (e.g.
1 Jan 88). Must cite at least year.

Block 3. Type of Report and Dates Covered.
State whether report is interim, final, etc. If
applicable, enter inclusive report dates (e.g.
10 Jun 87 - 30 Jun 88).

Block 4. Title and Subtitle. A title is taken from
the part of the report that provides the most
meaningful and complete information. When a
report is prepared in more than one volume,
repeat the primary title, add volume number, and
include subtitle for the specific volume. On
classified documents enter the title classification
in parentheses.

Block 5. Funding Numbers. To include contract
and grant numbers; may include program
element number(s), project number(s), task
number(s), and work unit number(s). Use the
following labels:

C - Contract PR - Project

G - Grant TA - Task

PE - Program WU - Work Unit
Element Accession No.

Block 6. Author(s). Name(s) of person(s)
responsible for writing the report, performing
the research, or credited with the content of the
report. If editor or compiler, this should follow
the name(s).

Block 7. Performing Organization Name(s) and
Address(es). Self-explanatory.

Block 8. Performing Organization Report
Number. Enter the unique alphanumeric report
number(s) assigned by the organization
performing the report.

Block 9. Sponsoring/Monitoring Agency Name(s)

and Address(es). Self-expianatory.

Block 10. Sponsoring/Monitoring Agency
Report Number. (If known)

Block 11. Supplementary Notes. Enter
information not included elsewhere such as;
prepared in cooperation with...; Trans. of...; To be
published in.... When a report is revised, include
a statement whether the new report supersedes
or supplements the older report.

Block 12a. Distribution/Availability Statement.
Denotes public availability or limitations. Cite any
availability to the public. Enter additional
limitations or special markings in all capitals (e.g.
NORFORN, REL, ITAR).

DOD - See DoDD 4230.25, “Distribution
Statements on Technical
Documents.”

DOE - See authorities.

NASA - See Handbook NHB 2200.2.

NTIS - Leave blank.

Block 12b. Distribution Code.

DOD - Leave blank

DOE - Enter DOE distribution categories
from the Standard Distribution for
Unclassified Scientific and Technical
Reports

NASA - Leave blank.

NTIS - Leave blank.

Block 13. Abstract. Include a brief (Maximum
200 words) factual summary of the most
significant information contained in the report.

Block 14. Subject Terms. Keywords or phrases
identifying major subjects in the report.

Block 15. Number of Pages. Enter the total
number of pages.

Block 16. Price Code. Enter appropriate price
code (NTIS only).

Block 17. - 19. Security Classifications. Self-
explanatory. Enter U.S. Security Classification in
accordance with U.S. Security Regulations (i.e.,
UNCLASSIFIED). If form contains classified
information, stamp classification on the top and
bottom of the page.

Block 20. Limitation of Abstract. This block must
be completed to assign a limitation to the

abstract. Enter either UL (unlimited) or SAR (same
as report). An entry in this block is necessary if
the abstract is to be limited. If blank, the abstract
is assumed to be unlimited.

Standard Form 298 Back (Rev. 2-89)

MASTER COPY: PLEASE KEEP THIS "MEMORANDUM OF TRANSMITTAL" BLANK FOR
REPRODUCTION PURPOSES. WHEN REPORTS ARE GENERATED UNDER THE ARO SPONSORSHIP,
FORWARD A COMPLETED COPY OF THIS FORM WITH EACH REPORT SHIPMENT TO THE ARO. THIS
WILL ASSURE PROPER IDENTIFICATION. NOT TO BE USED FOR INTERIM PROGRESS REPORTS;
SEE PAGE 1 FOR INTERIM PROGRESS REPORT INSTRUCTIONS.

MEMORANDUM OF TRANSMITTAL

U.S. Army Research Office

ATTN: AMXRO-ICA-L (Hall)

P.O. Box 12211

Research Triangle Park, NC 27709-2211

Reprint (Orig + 2 copies) Technical Report (Orig + 2 copies)
Manuscript (1 copy) X___ Final Progress Report (Orig + 2 copies)
Related Material (1 copy)

CONTRACT/GRANT NUMBER:__DAALO3-91-C-0047

TITLE: A Scalable Parallel Library for Numerical Linear Algebra

is forwarded for your information.

SUBMITTED FOR PUBLICATION TO (applicable only if report is manuscript):

Sincerely,

DO NOT REMOVE LABEL BELOW
THIS IS FOR IDENTIFICATION PURPOSES

Jack J. Dongarra 34387MA
Department of Computer Science
University of Tennessee,

Knoxville

Knoxville, TN 37916

A Scalable Parallel Library for
Numerical Linear Algebra

Final Progress Report
Jack J. Dongarra
January 1996

U.S. Army Research Office

Research Agreement DAAL03-91-C-0047

University of Tennessee at Knoxville
Oak Ridge National Laboratory
University of California at Berkeley
Rice University
University of Illinois at Urbana-Champaign
University of California at Los Angeles

Approved for public release;
distribution unlimited.

The views, opinions, and/or findings contained in this report are those
of the author(s) and should not be construed as an official Department
of the Army position, policy, or decision, unless so designated by other
documentation.

Contents

9

10 Scientific Personnel Supported By This Project and De-
grees Awarded

Introduction

ScaLAPACK

2.1 Data Distribution
22 BuildingBlocks L
2.3 Contents of ScaLAPACK
2.4 Symmetric Eigenvalue Problem
2.5 Documentation

ARPACK
3.1 Large Sparse Eigenvalue Software
3.2 Applications of ARPACK

Application Templates
CAPSS

MPI

PDE Solver Package

New Algorithms

8.1 Sparse Direct Methods
8.2 A New Algorithm for the Symmetric Eigenproblem

8.3 Parallel Sign Function
8.4 Iterative Methods

List Of Publications And Technical Reports

11 Report Of Inventions (by title only):

0 00 3 O Ut W ~

©

16

19

21

26

28
28
29
29
30

31

33

35

List of Figures

1

Use of communicators. Time increases down the page.
Numbers in parentheses indicate the process to which
data are being sent or received. The gray shaded area
represents the library routine call. In this case the pro-
gram behaves as intended. Note that the second message
sent by process 2 is received by process 0, and that the
message sent by process 0 is received by process 2. . . .
Unintended behavior of program. In this case the mes-
sage from process 2 to process 0 is never received, and
deadlock results.,
One-all and all-all versions of the broadcast, scatter, and
gather routines for a group of six processes. In each case,
each row of boxes represents contiguous data locations
in one process. Thus, in the one-all broadcast, initially
just the first process contains the data Ag, but after the
broadcast all processes containit.

23

24

1 Introduction

The research project “A scalable parallel library for numerical linear
algebra” consisted of a number of closely related topics involving re-
searchers at a number of institutions. ScaLAPACK was developed at
the University of Tennessee at Knoxville, Oak Ridge National Labora-
tory, and the University of California at Berkeley. ScaLAPACK is a
prototype library of software for performing dense linear algebra com-
putations on message-passing computers. ARPACK was developed at
Rice University, and is a software package for solving large, sparse,
nonsymmetric eigenproblems using a variant of the Arnoldi method.
CAPSS, developed at the University of Illinois at Urbana-Champaign,
is a fully parallel package for solving sparse linear systems of the form
Az = b on message passing computers using matrix factorization. Re-
searchers at the University of California at Los Angeles have developed
a PDE solver package that provided support for the solution of elliptic
PDEs using either finite elements or finite differences in two or three
dimensions. ScaLAPACK, ARPACK, and CAPSS have been placed in
the public domain and are accessible via the National HPCC Software
Exchange.

The research led to a number of important new software tools and
standards. Recognizing that a message passing standard was necessary
to ensure the easy portability of the prototype libraries, the project
initiated and promoted the development of the MPI message passing
interface [30]. Standards specific to parallel linear algebra were also de-
veloped. The PBLAS (Parallel Basic Linear Algebra Subprograms) [17]
are message passing versions of most of the sequential BLAS routines,
and have a similar interface. The BLACS (Basic Linear Algebra Com-
munication Subprograms) are a set of routines for communicating rect-
angular and trapezoidal sub-matrices between processes. The BLACS
and PBLAS are important building blocks of the ScaLAPACK library,
and are also used in ARPACK.

A number of new scalable algorithms have been developed. A new
version of the dense symmetric eigenvalue routine PDSYEVX is faster
in mest common cases and eliminates the need to reorthogonalize in
the clustered eigenvalue case. A second eigensolver was also developed
that is slower than PDSYEVX, but is more reliable. An algorithm
based on the Arnoldi technique has been developed that evaluates the

eigenvalues for a selected subset of the spectrum of a large matrix.
The remaining sections of this report discuss each of the main topics
of the research in more detail.

2 ScaLAPACK

Two key factors in ensuring that the ScaLAPACK algorithms have
good scalability and performance characteristics are maintaining long
vector lengths, and maximizing data reuse in the upper levels of mem-
ory. Long vector lengths result in more effective use of the vector or
RISC processors found in many parallel computers. Thus, in imple-
menting ScaLAPACK we have avoided performing operations on small
matrices and vectors. By reusing data in the upper levels of mem-
ory (registers and cache) the longer latencies associated with accesses
to lower levels of memory (main memory, off-processor memory) are
avoided. In ScaLAPACK, high levels of data reuse are ensured by
the use of block partitioned algorithms that exploit locality of refer-
ence. This reduces the frequency of communication between processes,
thereby avoiding message startup latency. The sequential computa-
tions performed by each process are mostly expressed in terms of Level
2 and Level 3 Basic Linear Algebra Subprograms (BLAS) [21, 24].
These computations are done using commercially available assembly
coded routines that have good data reuse characteristics, and make
efficient use of the target chip architecture.

In many of the ScaLAPACK routines, such as the factorization
routines discussed in [26], columns and/or rows of the matrix are elim-
inated as the computation progresses. This leads to a tradeofl between
data reuse and load balance. This tradeoff is discussed in [27], and may
be controlled at the user level by varying the parameters of the data
distribution, as discussed in the next subsection.

2.1 Data Distribution

In many linear algebra algorithms the distribution of work may become
uneven as the algorithm progresses, as in LU factorization in which rows
and columns become eliminated from the computation. ScaLAPACK,
therefore, makes use of the block cyclic data distribution in which ma-

trix blocks separated by a fixed stride in the row and column directions
are assigned to the same process. The block cyclic data distribution is
parameterized by the four numbers P, @), r, and ¢, where P X @) is the
process template and 7 X ¢ is the block size. Although the interface
of all ScaLAPACK routines can support arbitrary values of these pa-
rameters, the coding of certain routines imposes further requirements
on these parameters. These temporary code restrictions simplified the
code development and insured efficiency. Thus, for example, in the LU
factorization, we require that the blocks be square.

Suppose we have M objects indexed by the integers 0,1,..., M —1.
In the block cyclic data distribution the mapping of the global index,
m, can be expressed as m — (p,b,1), where p is the logical process
number, b is the block number in process p, and 7 is the index within
block b to which m is mapped. Thus, if the number of data objects in
a block is r, the block cyclic data distribution may be written,

m s ({%‘MJ , [?J . m mod r) (1)

where T' = rP, and P is the number of processes. The distribution
of a block-partitioned matrix can be regarded as the tensor product of
two such mappings, one that distributes the rows of the matrix over P
processes, and another that distributes the columns over () processes.
It should be noted that Eq. 1 reverts to the cyclic distribution when
r = 1, with local index ¢z = 0 for all blocks. A block distribution is
recovered when r = [M/P], in which case there is a single block in
each process with block number b = 0. Thus, we have

m +— (m mod P,|m/P],0) (2)
for a _cyclic data distribution, and

mw— (|m/L|,0,mmod L), (3)
for a block distribution, where L = [M/P].

2.2 Building Blocks

The ScaLAPACK routines are built out of a small number of modules.
The most fundamental of these are the Basic Linear Algebra Com-
munication Subprograms (BLACS) [22, 23, 25], that perform common

6

matrix-oriented communication tasks, and the sequential Basic Linear
Algebra Subprograms (BLAS) [21, 24, 38], in particular the Level 2 and
3 BLAS. ScaLAPACK can be ported with no code modification to any
machine on which the BLACS and the BLAS are available. The Parallel
BLAS (PBLAS) are message passing versions of most of the sequential
BLAS routines. The BLACS, the sequential BLAS, and the PBLAS
are the modules from which the higher level ScaLAPACK routines are
built. Thus, the entire ScaLAPACK package contains modules at a
number of different levels. For many users the top level ScaLAPACK
routines will be sufficient to build applications. However, more expert
users may make use of the lower level routines to build customized
routines not provided in ScaLAPACK.

The BLACS package attempts to provide the same ease of use and
portability for MIMD message-passing linear algebra communication
that the BLAS provide for linear algebra computation. Therefore, fu-
ture software for dense linear algebra on MIMD platforms could con-
sist of calls to the PBLAS for computation and calls to the BLACS
for communication. Since both packages will have been optimized for
each particular platform, good performance should be achieved with
relatively little effort.

In the ScaLAPACK routines all interprocess communication takes
place within the PBLAS and the BLACS, so the source code of the top
software layer of ScaLAPACK looks very similar to that of LAPACK.
The BLACS have been implemented for the Intel family of computers,
the TMC CM-5, the IBM SP-X, the Cray T3D, PVM, and MPI.

2.3 Contents of ScaLAPACK
The initial public release of ScaLAPACK occurred in February, 1995,

and included routines for the solution of a general system of linear
equations via LU and Cholesky factorizations, orthogonal factoriza-
tions (QR, RQ, LQ, and QL), reduction to condensed form (upper Hes-
senberg, tridiagonal form, and bidiagonal), and the symmetric eigen-
problem.

Since this initial public release, many improvements have been un-
derway to increase the flexibility and functionality of the library. Flex-
ibility is being increased by expanding the spectrum of PBLAS opera-
tions. For instance the ability to operate on non-aligned data not only

7

greatly simplifies the writing of ScaLAPACK codes but also makes it
possible to express divide-and-conquer algorithms in terms of calls to
ScaLAPACK and PBLAS routines. The functionality of ScaLAPACK
is being expanded by the introduction of new routines such as condi-
tion estimation and iterative refinement for LU and Cholesky, full rank
and rank deficient linear least squares, generalized RQ and QR factor-
izations, generalized linear least squares, singular value decomposition,
symmetric positive definite banded routines, and tridiagonal solvers.

2.4 Symmetric Eigenvalue Problem

We designed, produced and released a parallel algorithm for the sym-
metric eigenvalue problem, PDSYEVX. This was released as part of
the 1995 ScaLAPACK release. This code can return some or all of the
eigenvalues of a dense symmetric matrix, and the corresponding eigen-
vectors. The constituent subroutines can be applied to the symmetric
tridiagonal problem. We modeled this routine on the LAPACK rou-
tine DSYEVX, and encountered a significant tradeoff between speed
and the ability to guarantee orthogonality of the computed eigenval-
ues in certain pathological cases. We chose speed over orthogonality,
mostly because of related work on a new algorithm that promises to
eliminate this problem (and will also replace the LAPACK implemen-
tation). This work is discussed in the section 8.2. We also produced a
detailed performance model of the current code, and variations on it,
which we have used in performance tuning and algorithm design [20].

2.5 Documentation

We are in the process of writing the ScaLAPACK Users’ Guide. This
book is patterned after the LAPACK Users’ Guide and will contain
descriptions of all routines contained in the package, as well as example
programs of their usage. It has been frequently requested by the user
community.

We maintain homepages for ScaLAPACK and the BLACS at the
respective URLs:

http://www.netlib.org/scalapack/index.html

and

http://www.netlib.org/blacs/index.html

and provide software support via the mailing aliases scalapack@cs.utk.edu
and blacs@cs.utk.edu.

3 ARPACK

We have developed mathematical software for large scale eigenvalue
problems based upon a new variant of the Arnoldi process. This new
variant of the Arnoldi process employs an implicit restarting scheme
that may be viewed as a truncation of the standard implicitly shifted
QR-iteration for dense problems. Numerical difficulties and storage
problems normally associated with Arnoldi and Lanczos processes are
avoided. The algorithm is capable of computing a few eigenvalues with
user specified features such as largest real part or largest magnitude us-
ing a predetermined storage requirement proportional to matrix order
times the desired number of eigenvalues.

The ARPACK software, which is based upon an implementation of
this algorithm, has been designed to be efficient on a variety of high
performance computers. Parallelism within the scheme is obtained
primarily through the matrix-vector operations that comprise the ma-
jority of the work in the algorithm. The software is capable of solving
large scale symmetric, nonsymmetric, and generalized eigenproblems
from significant application areas.

3.1 Large Sparse Eigenvalue Software

The most general problem addressed by this software is the generalized
eigenproblem

Az = AMz, (4)

where both A and M are real n x n matrices and M is symmetric.
We assume that the pair (A, M) is a regular definite pencil if A is also
symmetric or that M is positive semi-definite if A is nonsymmetric.
Arnoldi’s method is a Krylov subspace projection method. It ob-
tains approximations to eigenvalues and corresponding eigenvectors of

a large matrix A by constructing the orthogonal projection of this ma-
trix onto the Krylov subspace Span{v, Av,...,A*v}. The Arnoldi
process begins with the specification of a starting vector v and in &
steps produces the decomposition of an n x n matrix A into the form

AV = VH + fef, (5)

where v is the first column of the matrix V € R™*, VIV = [
H € R¥** is upper Hessenberg, f € R" with 0 = VT f and ¢;, € R*
the kth coordinate basis vector. The vector f is called the residual.
This factorization may be advanced one step at the cost of a (sparse)
matrix-vector product involving A and two dense matrix vector prod-
ucts involving VT and V. The dense products may be accomplished
using level 2 BLAS. The new column of V' will be vxy1 = f/8 where
B =|f|l , and B8 will become the next subdiagonal element of H.

The columns of V form an orthonormal basis for the Krylov sub-
space and H is the orthogonal projection of A onto this space. Eigen-
values and corresponding eigenvectors of H provide approximate eigen-
values and eigenvectors for A. If Hy = yf and we put ¢ = Vy, then
z,0 is an approximate eigenpair for A with

1Az — 26]| = | flllexyl,

and this provides a means for estimating the quality of the approxima-
tion.

The information obtained through this process is completely de-
termined by the choice of the starting vector. Eigen-information of
interést may not appear until k gets very large. In this case it becomes
intractable to maintain numerical orthogonality of the basis vectors V
and it also will require extensive storage. Failure to maintain orthogo-
nality leads to a number of numerical difficulties. Our method provides
a means to extract interesting information from very large Krylov sub-
spaces while avoiding the storage and numerical difficulties associated
with the standard approach. It does this by continually compressing
the interesting information into a fixed size k dimensional subspace.
This is accomplished through the implicitly shifted QR mechanism.
An Arnoldi factorization of length k + p is compressed to a factoriza-
tion of length k& by applying p implicit shifts resulting in

AV, = Vi H, +f k+z’e£+pQ’ (6)

10

where Vit, = VerpQy Hiyy = OTHisy 0, and Q = Q1Qs -+~ Qy, with
@; the orthogonal matrix associated with the shift x;. It may be shown
that the first & — 1 entries of the vector e{_l_ Q are zero. Equating
the first k£ columns on both sides yields an updated k—step Arnoldi
factorization

AViH = Vi HE + fi e, (7)

with an updated residual of the form f;f = V};pek.}.lﬁk + fr+p0. Using
this as a starting point it is possible to use p additional steps of the
Arnoldi process to return to the original form. Each of these applica-
tions implicitly applies a polynomial in A of degree p to the starting
vector. The roots of this polynomial are the shifts used in the QR pro-
cess and these may be selected to filter unwanted information from the
starting vector and hence from the Arnoldi factorization. Full details
may be found in [48].

The resulting software ARPACK based upon this mechanism pro-
vides several features which are not present in existing (single vector)
codes to our knowledge:

e Reverse communication interface

e Ability to return k eigenvalues which satisfy a user specified cri-
terion such as largest real part, largest absolute value, largest
algebraic value (symmetric case), etc.

o A fixed pre-determined storage requirement suffices throughout
the computation. Usually this is n* O(2k) + O(k?) where k is the
number of eigenvalues to be computed and n is the order of the
matrix. No auxiliary storage or interaction with such devices is
required during the course of the computation.

e Eigenvectors may be computed on request. The Arnoldi basis of
dimension k is always computed. The Arnoldi basis consists of
vectors which are numerically orthogonal to working accuracy.

o Accuracy: The numerical accuracy of the computed eigenvalues
and vectors is user specified and may be set to the level of working
precision. At working precision, the accuracy of the computed

11

eigenvalues and vectors is consistent with the accuracy expected
of a dense method such as the implicitly shifted QR iteration.

e Multiple eigenvalues offer no theoretical or computational diffi-
culty other than additional matrix vector products required to
expose the multiple instances. This cost is commensurate with
the cost of a block version of appropriate blocksize.

3.2 Applications of ARPACK

ARPACK has been used in a variety of challenging applications, and
has proven to be useful both in symmetric and nonsymmetric problems.
It is of particular interest when there is no opportunity to factor the
matrix and employ a “shift and invert” form of spectral transformation,

A (A=oD)™. (8)

Existing codes often rely upon this transformation to enhance conver-
gence. Extreme eigenvalues {u} of the matrix A are found very rapidly
with the Arnoldi/Lanczos process and the corresponding eigenvalues
{A} of the original matrix A are recovered from the relation A = 1/u+o.
Implementation of this transformation generally requires a matrix fac-
torization. In many important applications this is not possible due to
storage requirements and computational costs. The implicit restarting
technique used in ARPACK is often successful without this spectral
transformation.

One of the most important classes of application arises in com-
putational fluid dynamics. Here the matrices are obtained through
discretization of the Navier-Stokes equations. A typical application
involves linear stability analysis of steady state solutions. Here one
linearizes the nonlinear equation about a steady state and studies the
stability of this state through the examination of the spectrum. Usually
this amounts to determining if the eigenvalues of the discrete opera-
tor lie in the left halfplane. Typically these are parametrically depen-
dent problems and the analysis consists of determining phenomena such
as simple bifurcation, Hopf bifurcation (an imaginary complex pair of
eigenvalues cross the imaginary axis), turbulence, and vortex shedding
as this parameter is varied. Our method is well suited to this setting as

12

it is able to track a specified set of eigenvalues while they vary as func-
tions of the parameter. Qur software has been used to find the leading
eigenvalues in a Couette-Taylor wavy vortex instability problem involv-
ing matrices of order 4000. One interesting facet of this application is
that the matrices are not available explicitly and are logically dense.
The particular discretization provides efficient matrix-vector products
through Fourier transform. Details may be found in [29].

Alvarez-Cohen and McCarty have studied a groundwater remedia-
tion problem through a large nonsymmetric eigenanalysis [2]. They use
a pore-scale model to understand macroscopic groundwater transport
phenomena. Convection, diffusion, and biochemical reactions occur at
the pore level. The equations model flow through a single pore, whose
lining reacts with the flowing solute. Boundary conditions are periodic.
The eigenvalues of this boundary value problem provide useful informa-
tion about the flow through an aggregate of pore cells. Solution of the
eigenproblem is discussed in [28]. Preliminary computational studies
indicate that ARPACK can provide a means to extract a number of in-
teresting eigenvalues and eigenvectors more efficiently than the inverse
power method that is currently employed.

Our software has been used to study the stability of the core of
a civil nuclear power plant, as modeled by the two-group neutron
diffusion equation. Vaudescal [51] reports improved performance us-
ing ARPACK over results obtained in [36] using explicitly restarted
Arnoldi.

Véry large symmetric generalized eigenproblems arise in structural
analysis. One example that we have worked with at Cray Research
through the courtesy of Ford motor company involves an automobile
engine model constructed from 3D solid elements. Here the interest
is in a set of modes to allow solution of a forced frequency response
problem (K — AM)z = f(t), where f(t) is a cyclic forcing function
which is used to simulate expanding gas loads in the engine cylinder
as well as bearing loads from the piston connecting rods. This model
has over 250,000 degrees of freedom. The smallest eigenvalues are of
interest and the ARPACK code appears to be very competitive with
the best commercially available codes on problems of this size. For
details see [49].

Nonlinear eigenvalue problems also arise in structural analysis. We

13

are collaborating with researchers at Stanford University in this area.
In [47] we present an implicitly restarted Lanczos-based eigensolution
technique for evaluating the natural frequencies and modes from fre-
quency dependent eigenproblems in structural dynamics. The new so-
lution technique is used in conjunction with a mixed finite element
modeling procedure which utilizes both the polynomial and frequency
dependent displacement fields in formulating the system matrices. The
method is well suited to the solution of large scale problems. The
solution methodology presented in [47] is based upon the ability to
evaluate a specific set of parameterized nonlinear eigenvalue curves at
given values of the parameter using the symmetric generalized eigen-
solvers available in ARPACK. Numerical examples illustrate that the
implicitly restarted Lanczos method with secant interpolation accu-
rately evaluates the exact natural frequencies and modes of the non-
linear eigenproblem and verifies that the new eigensolution technique
coupled with the mixed finite element modeling procedure is more ac-
curate than the conventional finite element models. In addition, the
eigenvalue technique presented here is shown to be far more computa-
tionally efficient on large scale problems than the determinant search
techniques traditionally employed for solving exact vibration problems.
These techniques are being extended to solve damped problems (which
are nonsymmetric) and interior eigenvalue problems.

Computational chemistry provides a rich source of problems. ARPACK
is being used in two applications currently and holds promise for a va-
riety of challenging problems in this area. We are collaborating with
researchers at Ohio State on large scale three-dimensional reactive scat-
tering problems. The governing equation is the Schroedinger equation
and the computational technique for studying the physical phenomena
relies upon repeated eigenanalysis of a Hamiltonian operator consist-
ing of a Laplacian operator discretized in spherical co-ordinates plus a
surface potential. The discrete operator has a tensor product structure
from .the discrete Laplacian plus a diagonal matrix from the poten-
tial. The resulting matrix has a block structure consisting of m x m
blocks of order n . The diagonal blocks are dense and the off diag-
onal blocks are scalar multiples of the order n identity matrix. It is
virtually impossible to factor this matrix directly because the factors
are dense in any ordering. We are using a distributed memory parallel

14

version of ARPACK together with some preconditioning ideas to solve
these problems on distributed memory machines. Encouraging compu-
tational results have been obtained on Cray Y-MP machines and also
on the Intel Delta. See [32], [49] for further details.

Nonsymmetric problems also arise in quantum chemistry. Researchers
at University of Washington have used the code to investigate the ef-
fects of the electric field on InAs/GaSb and GaAs/Al,Ga;_, as quan-
tum wells. ARPACK was used to find highly accurate solutions to these
nonsymmetric problems which couldn’t be solved by other means. See
[39] for details.

Another source of problems arise in magnetohydrodynamics (MHD)
involving the study of the interaction of a plasma and a magnetic field.
The MHD equations describe the macroscopic behavior of the plasma
in the magnetic field. These equations form a system of coupled non-
linear PDE. Linear stability analysis of the linearized MHD equations
leads to a complex eigenvalue problem. Researchers at the Institute
for Plasma Physics and Utrecht University in the Netherlands have
modified the codes in ARPACK to work in complex arithmetic and
are using the resulting code to obtain very accurate approximations
to the eigenvalues lying on the Alfven curve. The code is not only
finding extremely accurate solutions, it is doing so far more efficiently
than the existing method of choice. Currently problems of order 3216
are being solved. The complex version of ARPACK produced 45 good
approximations of eigenvalues in 27 seconds of Cray Y-MP CPU time
while-the method currently in use needed 32 seconds to find 25 poorly
converged approximations. See [37] for details.

There are many other applications. In addition to the examples just
mentioned, ARPACK has been used to solve large scale problems in
the optimal design of a membrane and in the design of dielectric waveg-
uides. It may also be used to to compute the singular value decomposi-
tion (SVD) of large matrices. There are many important applications of
the SVD including analysis and enhancement of digital images. Several
applications of this technology arise in Computational Biology as well
as many other fields. As we gain experience with the ARPACK soft-
ware, we find an increasing number of new interesting and challenging
applications. The dramatic increase in modern computing power com-
bined with the new algorithms available in the ARPACK software can

15

provide solutions to eigenproblems that were previously intractable.

4 Application Templates

A new generation of even more massively parallel computers will soon
emerge. Concurrent with the development of these more powerful par-
allel systems is a shift in the computing practices of many scientists
and researchers. Increasingly, the tendency is to use a variety of dis-
tributed computing resources, with each individual task assigned to
the most appropriate architecture, rather than to use a single, mono-
lithic machine. The pace of these two developments, the emergence of
highly parallel machines and the move to a more distributed comput-
ing environment, has been so rapid that software developers have been
unable to keep up. Part of the problem has been that supporting sys-
tem software has inhibited this development. Consequently, exploiting
the power of these technological advances has become more and more
difficult. Much of the existing reusable scientific software, such as that
found in commercial libraries and in public domain packages, is no
longer adequate for the new architectures. If the full power of these
new machines is to be realized, then scalable libraries, comparable in
scope and quality to those that currently exist, must be developed.
One of our goals as software designers is to communicate to the
high-performance computing community algorithms and methods for
the solution of system of linear equations. In the past we have provided
black-box software in the form of a mathematical software library, such
as LAPACK, LINPACK, NAG, and IMSL. These software libraries

provide for:

o Easy interface with hidden details
e Reliability; the code should fail as rarely as possible
¢ Speed.

On the other hand, the high-performance computing community,
which wants to solve complex, large-scale problems as quickly as pos-
sible, seems to want

e Speed

16

o Access to internal details to tune data structures to the applica-
tion

e Algorithms that are fast for the particular application even if not
reliable as general methods.

These differing priorities make for different approaches to algo-
rithms and software. The first set of priorities leads us to produce
“black boxes” for general problem classes. The second set of priorities
seems to lead us to produce “template codes” or “toolboxes” where
the users can assemble, modify and tune building blocks starting from
well-documented subparts. This leads to software which is not going
to be reliable on all problems, and requires extensive user tuning to
make it work. This is just what the block-box users do not want.

In scientific high-performance computing we see three different com-
putational platforms emerging, each with a distinct set of users. The
first group of computers contains the traditional supercomputer. Com-
puters in this group exploit vector and modest parallel computing.
They are general purpose computers that can accommodate a large
cross section of applications while providing a high percentage of their
peak computing rate. They are the computers typified by the Cray
Y-MP and C90, IBM ES/9000, and NEC SX-3; the so-called general
purpose vector supercomputers.

The second group of computers are the highly parallel computers.
These machines often contain hundreds or even thousands of proces-
sors, usually RISC in design. The machines are usually loosely coupled
having a switching network and relatively long communication times
compared with computation times. These computers are suitable for
fine-grain and coarse-grain parallelism. As a system, the cost is usually
less than the traditional supercomputer and the programming environ-
ment is very poor and primitive. There is no portability since user’s
programs depend heavily on a particular architecture and on a partic-
ular software environment.

The third group of computers are the clusters of workstations. Each
workstation usually contains a single very fast RISC processor. Each
workstation is connected through a Local Area Network, or LAN, and
as such the communication time is very slow, making this setup not
very suitable for fine-grain parallelism. They usually have a rich soft-
ware environment and operating system on a workstation node, usually

17

UNIX. This solution is usually viewed as a very cost-effective solution
compared to the vector supercomputers and highly-parallel computers.

Users are in general not a monolithic entity, but in fact represent
a wide diversity of needs. Some are the sophisticated computational
scientists who eagerly move to the newest architecture in search of ever-
higher performance. Others want only to solve their problems with the
least change to their computational approach.

We hope to satisfy the high-performance computing community’s
needs by the use of reusable software templates. With the templates
we describe the basic features of the algorithms. These templates offer
the opportunity for whatever degree of customization the user may
desire, and also serve a valuable pedagogical role in teaching parallel
programming and instilling a better understanding of the algorithms
employed and results obtained. While providing the reusable software
templates we hope to retain the delicate numerical details in many
algorithms.

We believe it is important for users to have trust in the algorithms,
and hope this approach conveys the spirit of the algorithm and provides
a clear path for implementation where the appropriate data structures
can be integrated into the implementation. We believe that this ap-
proach of templates allows for easy modification to suit various needs.
More specifically, each template should have:

o Working software for matrices as general as the method allows.
e A mathematical description of the flow of the iteration.

. Algorithms described in a Fortran-77 program with calls to BLAS
[21, 24, 38], and LAPACK routines [3].

e Discussion of convergence and stopping criteria.

e Suggestions for extending a method to more specific matrix types
(for example, banded systems).

e Suggestions for tuning (for example, which preconditioners are
applicable and which are not).

e Performance: when to use a method and why.

o Reliability: for what class of problems the method is appropriate.

18

o Accuracy: suggestions for measuring the accuracy of the solution,
or the stability of the method.

An area where this will work well is with sparse matrix compu-
tations. Many important practical problems give rise to large sparse
systems of linear equations. One reason for the great interest in sparse
linear equations solvers and iterative methods is the importance of be-
ing able to obtain numerical solutions to partial differential equations.
Such systems appear in studies of electrical networks, economic-system
models, and physical processes such as diffusion, radiation, and elas-
ticity: Iterative methods work by continually refining an initial ap-
proximate solution so that it becomes closer and closer to the correct
solution. With an iterative method a sequence of approximate solu-
tions {z®} is constructed which essentially involve the matrix A only
in the context of matrix-vector multiplication. Thus the sparsity can
be taken advantage of so that each iteration requires O(n) operations.

Many basic methods exist for iteratively solving linear systems and
finding eigenvalues. The trick is finding the most effective method for
the problem at hand. The method that works well for one problem
type may not work as well for another. Or it may not work at all. We
have written a book on templates for large sparse linear systems [7] to
help address the needs of users of high performance computers.

5 CAPSS

Although many large scale scientific applications require a sparse direct
solver, there has been a lack of both algorithms and software to trans-
late the high execution rates of massively parallel multiprocessors into
faster solution times for such applications. The primary goal of this
portion of the research is the development of algorithms and software
for the scalable, fully parallel solution of large sparse systems of linear
equations using direct methods.

The main step in direct methods is matrix factorization. For sparse
matrices this step is preceded by a symbolic phase in which the matrix
is permuted so that sparsity will be preserved in the subsequent fac-
torization. For a fully parallel solver, both numeric and symbolic steps
must be parallelized. Several parallel numeric factorization algorithms

19

have been developed, but by comparison the effective parallelization
of the ordering step has lagged. Our work is based on a central idea,
that of developing new scalable parallel algorithms for nested dissec-
tion ordering and using the resulting partition tree in formulating var-
ious parallel matrix factorization schemes, including Cholesky (LLT),
Gaussian elimination with partial pivoting (LU), and orthogonal fac-
torization (QR).

We have developed a scalable parallel nested dissection scheme,
called Cartesian nested dissection [35]. This algorithm is suitable for
sparse matrices associated with an embedding in Euclidean space, such
as those typically arising from finite-element and finite-difference meth-
ods for partial differential equations. We have also developed a more
general purpose parallel nested dissection algorithm based on parallel
graph contraction [45]. Using a multifrontal approach based on the
resulting partition tree, we have developed algorithms for the numeric
steps of the parallel solution process for symmetric positive definite
systems [33] as well as nonsymmetric systems [43]. Some of these algo-
rithms have been packaged and distributed as CAPSS, a fully parallel
solver for message-passing multiprocessors [34].

We have used the basic framework for a fully parallel sparse direct
solver embodied in CAPSS as a basis for further development and en-
hancement of the various steps involved. For example, we are exploring
the use of numeric kernels for dense subproblems, based on ScalLapack,
to enhance both performance and scalability. Another phase of the
computation that has been a substantial bottleneck in the past is the
triangular solution, due to its unfavorable ratio of communication to
computation. We have developed a new “selective inversion” algorithm
[44] for the triangular solution phase that exhibits vastly improved per-
formance and scalability over previous methods for sparse triangular
solutions on message-passing, distributed-memory architectures. This
breakthrough is especially critical for applications that require the so-
lution of several linear systems involving the same matrix but different
right-hand-side vectors. We have also studied the use of local refine-
ment techniques for improving the quality of nested dissection order-
ings.

Other research concerns the use of sparse direct methods in ap-
plications. To gain some experience with the use of scalable software

20

for solving real-world problems, we have applied CAPSS to such prob-
lems as the stress analysis of foam-like materials, extrusion problems,
and crack-tip propagation. Interfacing with such applications codes
has emphasized to us the necessity of developing better interfaces that
are easier to use and/or more transparent to the user. One approach
we are exploring is the use of an interactive user interface that hides
the complex details of data distribution. We have also used sparse
matrix algorithms and results to evaluate the complexity of a finite-
element formulation in electromagnetic scattering [40], and to reorder
term-document matrices during information retrieval [8].

6 MPI

MPI is a standard message passing interface. The design of MPI was a
collective effort involving researchers in the United States and Europe
from many organizations and institutions. MPI includes point-to-point
and collective communication routines, as well as support for process
groups, and application topologies.

In, MPI there is currently no mechanism for creating processes, and
an MPI program is parallel ab initio, i.e., there is a fixed number of
processes from the start to the end of an application program. All pro-
cesses are members of at least one process group. Initially all processes
are members of the same group, and a number of routines are provided
that allow the user to create (and destroy) new subgroups. Within a
group each process is assigned a unique rank in the range 0 ton — 1,
where n is the number of processes in the group. This rank is used to
identify a process, and, in particular, is used to specify the source and
destination processes in a point-to-point communication operation, and
the root process in certain collective communication operations. As in
PVM, message selectivity in point-to-point communication as by source
process and message tag, each of which may be wildcarded to indicate
that any valid value is acceptable.

The key innovative ideas in MPI are the communicator abstraction
and general, or derived, datatypes. These will be discussed before de-
scribing the communication routines in more detail. Communicators
provide support for the design of safe, modular software libraries. Here
“safe” means that messages intended for a particular receive routine

21

in an application will not be incorrectly intercepted by another receive
routine. Thus, communicators are a powerful mechanism for avoiding
unintentional non-determinism in message passing. This is a particular
problem when using third-party software libraries that perform mes-
sage passing. The point here is that the application developer has no
way of knowing if the tag, group, and rank completely disambiguate
the message traffic of different libraries and the rest of the application.
Communicator arguments are passed to all MPI message passing rou-
tines, and a message can be communicated only if the communicator
arguments passed to the send and receive routines match. Thus, in
effect communicators provide an additional criterion for message selec-
tion, and hence permit the construction of independent tag spaces.

If communicators are not used to disambiguate message traffic there
are two ways in which a call to a library routine can lead to unin-
tended behavior. In the first case the processes enter a library routine
synchronously when a send has been initiated for which the match-
ing receive is not posted until after the library call. In this case the
message may be incorrectly received in the library routine. The sec-
ond possibility arises when different processes enter a library routine
asynchronously, as shown in the example in Figure 1, resulting in non-
deterministic behavior. If the program behaves correctly processes 0
and 1 each receive a message from process 2, using a wildcarded selec-
tion criterion to indicate that they are prepared to receive a message
from any process. The three processes then pass data around in a ring
within the library routine. If separate communicators are not used
for the communication inside and outside of the library routine this
program may intermittently fail. Suppose we delay the sending of the
second message sent by process 2, for example, by inserting some com-
putation, as shown in Figure 2. In this case the wildcarded receive in
process 0 is satisfied by a message sent from process 1, rather than from
process 2, and deadlock results. By supplying a different communica-
tor to the library routine we can ensure that the program is executed
correctly, regardless of when the processes enter the library routine.

Communicators are opaque objects, which means they can only be
manipulated using MPI routines. The key point about communicators
is that when a communicator is created by an MPI routine it is guar-
anteed to be unique. Thus it is possible to create a communicator and

22

Process 0 Process 1 Process 2
recv(any)| [recv(any)| | send(1) |

Figure 1: Use of communicators. Time increases down the page. Numbers
in parentheses indicate the process to which data are being sent or received.
The gray shaded area represents the library routine call. In this case the
program behaves as intended. Note that the second message sent by process
2 is received by process 0, and that the message sent by process 0 is received
by process 2.

pass it to a software library for use in all that library’s message pass-
ing. Provided that communicator is not used for any message passing
outside of the library, the library’s messages and those of the rest of
the application cannot be confused.

Communicators have a number of attributes. The group attribute
identifies the process group relative to which process ranks are inter-
preted, and/or which identifies the process group involved in a collec-
tive communication operation. Communicators also have a topology
attribute which gives the topology of the process group. Topologies
are discussed below. In addition, users may associate attributes with
communicators through a mechanism known as caching.

All point-to-point message passing routines in MPI take as an argu-
ment the datatype of the data communicated. In the simplest case this
will be a primitive datatype, such as an integer or floating point num-
ber. However, MPI provides a number of routines for creating more
general datatypes,and thereby supports the communication of array
sections and structures involving combinations of primitive datatypes.

In many applications the processes are arranged with a particular
topology, such as a two- or three-dimensional grid. MPI provides sup-
port for general application topologies that are specified by a graph in

23

Process 0 Process 1 Process 2
recv(any)| [recv(any)] | send(1) |

compute

Figure 2: Unintended behavior of program. In this case the message from
process 2 to process 0 is never received, and deadlock results.

which processes that communicate a significant amount are connected
by an arc. If the application topology is an n-dimensional Cartesian
grid then this generality is not needed, so as a convenience MPI pro-
vides explicit support for such topologies. For a Cartesian grid periodic
or nonperiodic boundary conditions may apply in any specified grid di-
mension. In MPI, a group either has a Cartesian or graph topology, or
no topology. In addition to providing routines for translating between
process rank and location in the topology, MPI also:

1. allows knowledge of the application topology to be exploited in
order to efficiently assign processes to physical processors,

2. provides a routine for partitioning a Cartesian grid into hyper-
plane groups by removing a specified set of dimensions,

3. provides support for shifting data along a specified dimension of
a Cartesian grid.

By dividing a Cartesian grid into hyperplane groups it is possible to
perform collective communication operations within these groups. In
particular, if all but one dimension is removed a set of one-dimensional
subgroups is formed, and it is possible, for example, to perform a mul-
ticast in the corresponding direction.

A set of routines that supports point-to-point communication be-
tween pairs of processes forms the core of MPI routines for sending and
receiving blocking and nonblocking messages are provided. A blocking

24

send does not return until it is safe for the application to alter the mes-
sage buffer on the sending process without corrupting or changing the
message sent. A nonblocking send may return while the message buffer
on the sending process is still volatile, and it should not be changed
until it is guaranteed that this will not corrupt the message. This may
be done by either calling a routine that blocks until the message buffer
may be safely reused, or by calling a routine that performs a nonblock-
ing check on the message status. A blocking receive suspends execution
on the receiving process until the incoming message has been placed in
the specified application buffer. A nonblocking receive may return be-
fore the message has been received into the specified application buffer,
and a subsequent call must be made to ensure that this has occurred
before the application uses the data in the message.

In MPI a message may be sent in one of four communication modes,
which approximately correspond to the most common protocols used
for point-to-point communication. In ready mode a message may be
sent only if a corresponding receive has been initiated. In standard
mode a message may be sent regardless of whether a corresponding
receive has been initiated. MPI includes a synchronous mode which is
the same as the standard mode, except that the send operation will
not complete until a corresponding receive has been initiated on the
destination process. Finally, there is a buffered mode. To use buffered
mode the user must first supply a buffer and associate it with a com-
municator. When a subsequent send is performed using that commu-
nicator MPI may use the associated buffer to buffer the message. A
buffered send may be performed regardless of whether a corresponding
receive has been initiated. In PVM message buffering is provided by
the system, but MPI does not mandate that an implementation pro-
vide message buffering. Buffered mode provides a way of making MPI
buffer messages, and is useful when converting a program from PVM
to MPL

In addition, MPI provides routines that send to one process while
receiving from another. Different versions are provided for when the
send and receive buffers are distinct, and for when they are the same.
The send/receive operation is blocking, so does not return until the
send buffer is ready for reuse, and the incoming message has been
received.

25

MPI includes a rich set of collective communication routines that
perform coordinated communication among a group of processes. The
process group is that associated with the communicator that is passed
into the routine. MPI’s collective communication routines can be di-
vided into two groups: data movement routines and global computation
routines. There are five types of data movement routine: broadcast,
scatter, gather, all-gather, and all-to-all. These are illustrated in Fig. 3.

There are two global computation routines in MPI: reduce and scan.
The MPI reduction operation is similar in functionality to that provided
by PVM. Different versions of the reduction routine are provided de-
pending on whether the results are made available to all processes in the
group, just one process, or are scattered cyclicly across the group. The
scan routines perform a parallel prefix with respect to a user-specified
operation on data distributed across a specified group. If D; is the
data item on the process with rank ¢, then on completion the output
buffer of this process contains the result of combining the values from
the processes with rank 0,1,...,1, i.e.,

Di=Do®D1®D, @& D; 9)

Two versions of the MPI specification exist. One is dated May 5,
1994 (version 1.0), and the other June 12, 1995 (version 1.1). The latter
document incorporates corrections and clarifications to the former, but
the two do not differ in any substantial way. At the time of writing
version 1.1 is only available electronically [30]. The book on using
MPI by Gropp, Lusk and Skjellum, who played an active role in MPI’s
design, gives a good introduction to application programming with MPI
[31]. An annotated reference manual based on version 1.1 of MPI is
available [41]. A large amount of information about MPI is available
via the web, including portable implementations of MPI, information
about efforts to extend MPI, and publications related to MPI [1].

7 PDE Solver Package

The PDE Solvers Package, described in [46] is an extension of the
PETSc system developed originally by W. Gropp and B. Smith, which
already has a wide user base. The PDE Solvers package is mostly de-
veloped at UCLA by B. Smith, with contributions from Chan, Ciarlet

26

data —

7))
8[A, A,
(7]
3 Ag
o one-all broadcast
T —> B
Ao
Ao
Ag Ao| Bo| Co| Po] Eof Fo
B Ale [c.ip.lE.|F
0 all-all broadcast |—24—21 01 01 0] ©
CO @ AO B0 CO DO EO FO
Dy Ao] Bo| ©o] Po| Eo| Fo
Eo Ao] Bo| 0| Po| Eo] Fo
Fo Ao] Bo| €o| Po| Eo| Fo
Aol Al Ay Agl A, A Ag
one-all scatter A
1
—> 5
] < 1 | %3
A
one-all gather 4
Ag
Aol A1| Az As| As| As Ao0| Bo| €0} Po| Eo| Fo
B.|B.|B,[B.[B,|8B A, ls.lc,[o,e]F
0 P1] %2 Pa| Bal Bs| 1 <catter 11 B4]C1|P1]| Eq| Fy
1coleql el cslcylcs Ayl B,[c,o{ 0, sl Fy
AR CAENEAEE :D N ERCACA A EA
Eol B[Ex| Ea| B4 €5 MR
Fol F1] F2| Fa| Fa| Fs A5 Bs| C5|Ps| E5| F5

Figure 3: One-all and all-all versions of the broadcast, scatter, and gather
routines for a group of six processes. In each case, each row of boxes
represents contiguous data location®2in one process. Thus, in the one-all
broadcast, initially just the first process contains the data Ag, but after the
broadcast all processes contain it.

and Lamour. This package provides support for the solution of elliptic
PDEs using either finite elements or finite differences in 2 or 3 dimen-
sions on either structured or unstructured grids. Several classical direct
and iterative methods, as well as several multigrid and domain decom-
position variants, may be used to solve the resulting linear systems.
Although the package is fully functional and self-contained, we view it
mainly as a prototype to demonstrate and learn how such packages may
be organized. Currently, the package has very little explicit support
for parallel computing in the package, except for parallel matrix-vector
operation using the Chameleon message passing interface. We feel it
is important to develop the complete package as a whole rather than
just isolate the sparse iterative part because the structure of the dis-
cretization matrices can be better exploited in the solution process. We
emphasize that the sparse iterative solvers in the PDE Solvers package
can be used as “library” routines independent of the PDE discretization
routines.

8 New Algorithms

In this section we describe new algorithms developed in the project.
In addition, some new algorithms based on the Arnoldi method have
already been discussed in 3.1.

8.1 Sparse Direct Methods

Numeric factorization has received most of the attention in previous re-
search on parallel direct methods for sparse linear systems, so our work
has focused on the symbolic phase that precedes factorization and the
triangular solution phase that follows factorization. Prior to numeric
factorization of a sparse matrix, it is essential to reorder the matrix
to reduce fill (i.e., the creation of new nonzeros), and thereby reduce
the work and storage required. We have developed two new parallel
algorithms for ordering sparse matrices for this purpose. One, called
Cartesian nested dissection, recursively subdivides the graph of the
matrix based on coordinate values of the nodes embedded in Euclidean
space. The other ordering algorithm is based on parallel graph contrac-
tion, and it is suitable for problems for which geometric coordinates are

28

not available. In addition to these algorithms for the symbolic part of
the computation, we have also developed a new parallel algorithm for
the triangular solution phase that follows the factorization. This algo-
rithm is based on selective inversion of small dense submatrices of the
sparse triangular factor, and it has vastly improved the performance
and scalability of this phase of the computation, which had previously
been a substantial bottleneck using conventional subsitution methods
for triangular solution.

8.2 A New Algorithm for the Symmetric Eigenproblem

This is joint work between Inderjit Dhillon, partially supported by
this grant, Professor Beresford Parlett, supported by ONR, and Vince
Fernando, supported by NAG. The basis of the algorithm currently in
PDSYEVX is bisection (to compute eigenvalues) followed by inverse
iteration (to compute eigenvectors). Bisection costs O(n?) operations
to find all n eigenvalues of an n-by-n symmetric tridiagonal matrix,
and can be parallelized to run in O(n?/p) time on p processors. If
the eigenvalues are not close together, inverse iteration can also be
parallelized to run in O(n?/p) time with little or no communication,
also perfect speedup. However, if the eigenvalues are tightly clustered,
the time can increase to O(n®), with a great deal of communication.
Based on a much deeper mathematical understanding of the problem,
we have developed new algorithms which appear to eliminate the need
for ever doing more than O(n?/p) work in an embarrassingly parallel
fashion. This is a breakthrough which promises to change the way we
solve this important problem on serial machines as well. A preliminary
technical report describes this work [42].

8.3 Parallel Sign Function

The sign function is an algorithm for the dense nonsymmetric eigen-
value problem. It is relatively straightforward to parallelize, compared
to the conventional sequential algorithm, but does several times as
many floating point operations. It is the only scalable algorithm for
this problem currently available. We have explored its numerical prop-
erties, performance, algorithmic variations, and suitability for mixed
parallelism in a sequence of papers [4, 5, 6, 52].

29

8.4 Iterative Methods

The main goal of this portion of the project has been to develop par-
allel and scalable algorithms and software for iterative methods for
solving sparse linear systems of equations, particularly those that arise
in the discretizations of partial differential equations. The methods
include standard Krylov subspace methods such as Conjugate Gradi-
ents, GMRES, BiCGSTAB etc.; generally applicable preconditioners
such as point and block relaxation methods, incomplete factorization
methods; and PDE-specific preconditioners such as multigrid and do-
main decomposition methods. Our studies involved not only a careful
study of existing methods but also the development of new methods,
especially considering that iterative methods are generally not as fully
developed as direct methods. Parallel implementation considerations
also motivated us to study data and task partitioning algorithms and
sparse distributed data structures for sparse matrices and vectors.

In the area of iterative methods work has focused on the study of
scalable iterative methods:

1. Domain decomposition and multigrid algorithms: see [9, 10, 16,
11, 12, 13, 15]. Our main contribution is to extend the standard
algorithms to handle unstructured meshes., which are becoming
increasingly popular, and to study their parallel implementation
issues. In [13] we prove a somewhat surprising result that the
part of the boundary with Neumann boundary conditions (e.g.
outflow) must be covered by the coarse meshes in order to retain
the usual optimal convergence rate of MG and DD.

2. Krylov subspace methods and their parallel implementations: For
a state-of-the-art survey see [50].

3. Incomplete factorization preconditioners: For a state-of-the-art
survey see [14].

4. Partitioning algorithms: In the parallel implementation of sparse
iterative methods, the data (i.e. matrices and vectors or grid
functions) must be partitioned to achieve load balance and min-
imize communication [19, 18]. We have developed a very fast
(compared to spectral partitioning methods) greedy partitioning
algorithm which empirically does not seem to lose very much in

30

terms of the quality of the partition and the size of the cut set.
This method, and others, have been incorporated into the PDE
Solvers package.

List Of Publications And Technical Reports

. Software Libraries for Linear Algebra Computations on High Per-

formance Computers, J. Dongarra and D. Walker, STAM Review,
Vol. 37, No. 2, June 1995.

. Performance Complezity of LU Factorization with Efficient Pipelin-

ing and Qverlap on a Multiprocessor, J. Dongarra, F. Desprez,
and B. Tourancheau, Parallel Processing Letters, Vol. 5, No. 2,
1995.

. PB-BLAS: A Set of Parallel Block Basic Linear Algebra Subrou-

tines, J. Choi, J. Dongarra, and D. Walker,

To appear Concurrency: Practice and Experience.

. The Design and Implementation of the ScaLAPACK LU, QR,

and Cholesky Factorization Routines, J. Choi, J. Dongarra, S.
Ostrouchov, A. P. Petitet, D. W. Walker, and R. C. Whaley,
Technical report, University of Tennessee, CS-94-246, LAPACK
Working Note 80, September 1994.

To appear in Scientific Programming, 1995.

. The Design of a Parallel Dense Linear Algebra Software Library:

Reduction to Hessenberg, Tridiagonal, and Bidiagonal Form, J.
Choi, J. Dongarra, and D. Walker, Numerical Algorithms, Vol.
10, No. 3 and 4, pp. 379-400, 1995.

. A Highly Parallel Algorithm for the Reduction of a Nonsymmetric

Matriz to Block Upper-Hessenberg Form, M. Berry, J. Dongarra,
and Y. Kim, Parallel Computing, Vol 21, No.8, pp. 1189-1212,
August, 1995.

. Parallel Matriz Transpose Algorithms on Distributed Memory Con-

current Computers, J. Choi, J. Dongarra, and D. Walker, Parallel
Computing, pp. 1387-1405, Vol. 21, 1995.

31

8.

10.

11.

12.

13.

14.

15.

16.

The Spectral Decomposition of Nonsymmetric Matrices on Dis-
tributed Memory Computers, Z. Bai, J. Demmel, J. Dongarra, A.
Petitet, H. Robinson, and K. Stanley, Technical Report, Univer-
sity of Tennessee, CS-95-273, LAPACK Working Note 91, January .
1995.

To appear.

Inverse free parallel spectral divide and conquer algorithms for
nonsymmetric eigenproblems, Z. Bai, J. Demmel, and M. Gu.
To appear in Numerische Mathematik.

Sparse matriz reordering schemes for browsing hypertext, M. Berry,
B. Hendrickson, and P. Raghavan, Lec. Appl. Math., Amer.
Math. Soc., 1995.

To appear.

A Cartesian nested dissection algorithm, M. T. Heath and P.
Raghavan, STAM J. Matriz Anal. Appl., 16(1):235-253, 1995.

Distributed sparse Gaussian elimination and orthogonal factor-
ization, P. Raghavan, SIAM J. Sci. Comput., 16(6):1462-1477,
1995.

Efficient parallel triangular solution with selective inversion, P.
Raghavan, Technical Report CS-95-314, University of Tennessee,
Dec 1995.

Submitted to SIAM J. Sci. Comput.

‘Parallel ordering using edge contraction, P. Raghavan, Technical
Report CS-95-293, University of Tennessee, May 1995.
Submitted to Parallel Computing.

Constructing Numerical Software Libraries for High-Performance
Computing Environments, J. Choi, J. Dongarra, R. Pozo, and
D. Walker, Workshop on Parallel Scientific Computing, Lyngby,
Denmark, Lecture Notes in Computer Science Number 879, Springer-
Verlag, pp 147-168, 1995.

Workshop on Environments and Tools for Parallel Scientific Com-
puting, SIAM Publications, Editors J. Dongarra and B. Tourancheau,
The Design of a Parallel, Dense Linear Algebra Software Library:

32

17.

18.

19.

10

Reduction to Hessenberg, Tridiagonal, and Bidiagonal Form, J.
Choi, J. Dongarra, and D. Walker.

ScaLAPACK: A Dense, Linear Algebra Library for Message-Passing
Computers, J. Choi, J. Dongarra, S. Ostrouchov, A. Petitet, D.
Walker, and C. Whaley, Manchester Linear Algebra and Applica-
tions Conference, July 10-12, 1995.

The performance of finding eigenvalues and eigenvectors of dense
symmetric matrices on distributed memory computers, J. Demmel
and K. Stanley, In Proceedings of the Seventh SIAM Conference
on Parallel Processing for Scientific Computing. SIAM Press,
1995.

Modeling the benefits of mized data and task parallelism, K. Yelick
and S. Chakrabarti, In Proceedings of the 1995 Symposium on
Parallel Algorithms and Architectures, 1995.

_Scientific Personnel Supported By This Project
and Degrees Awarded

Robert Block, Graduate Student, University of Illinois at Urbana-
Champaign, MS 1995.

Tony Chan, Professor, University of California at Los Angeles.

Chee-Whye Chin, Undergraduate Student, University of Califor-
nia at Berkeley.

Jaeyoung Choi, Research Assistant Professor, University of Ten-
nessee at Knoxville.

Patrick Ciarlet, Post-doc visitor, University of California at Los
Angeles.

Andrew Cleary, Research Assistant Professor, University of Ten-

nessee at Knoxville.

James Demmel, Professor, University of California at Berkeley.

33

o Jack Dongarra, Distinguished Professor at University of Tennessee,
Knoxville, and Distinguished Scientist at Oak Ridge National
Laboratory.

o Inderjit Dhillon, Graduate Student, University of California at
Berkeley.

o Victor Eijkhout, Research Assistant, University of California at
Los Angeles.

e Michael Heath, Professor, University of Illinois at Urbana-Champaign.

e Greg Henry, Research Assistant Professor, University of Ten-
nessee at Knoxville.

e Dan Yu Hu, Post-doc, Rice University.

o Ajay Kalhan, Graduate Student, University of Tennessee at Knoxville.

e Chik Tung Dominic Lam, Undergraduate Student, University of
California at Berkeley.

e Francois Lamour, Post-doc visitor, University of California at Los
Angeles.

e Richard Lehoucq, Graduate Student, Rice University, PhD 1995.
e Xiaoye Li, Graduate Student, University of California at Berkeley.

e Robert Manchek, Graduate Student, University of Tennessee, MS
1994.

e Susan Ostrouchov, Research Associate, University of Tennessee
at Knoxville.

34

Knoxville.

o Chris Puscasiu, Undergraduate Student, University of California
at Berkeley.

e Padma Raghavan, Assistant Professor, University of Tennessee at

|
r e Antoine Petitet, Graduate Student, University of Tennessee at
|
|
‘ Knoxville.

e Huan Ren, Graduate Student, University of California at Berke-
ley.

¢ R. Seccomb, Graduate student, University of Tennessee at Knoxville.

e Danny Sorensen, Professor, Rice University.

e Ken Stanley, Graduate student, University of California at Berke-
ley.

e Ted Szeto, Assistant Professor, University of California at Los
Angeles.

e JinqChong Teo, Undergraduate Student, University of California
at Berkeley.

e David Walker, Oak Ridge National Laboratory

e Clint Whaley, Graduate Student, University of Tennessee at Knoxville,
MS 1994.

e Scotti Whitmire, Graduate Student, University of Tennessee at
Knoxville.

e Jun Zou, Assistant Professor, University of California at Los An-
geles.

11 Report Of Inventions (by title only):

None.

35

References

[1]

2]

3]

[4]

[5]

[6]

[7]

The URL of a good MPI web page is
http://www.mcs.anl.gov/mpi/. This has links to other exten-
sive MPI pages at Mississippi State Engineering Center and Oak
Ridge National Laboratory.

L. M. Alvarez-Cohen and P. L. McCarty. A cometabolic bio-
transformation model for halogenated aliphatic compounds ex-
hibiting product toxicity. Environmental Science and Technology,
25(8):1381-1387, 1991.

E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du
Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrou-
chov, and D. Sorensen. LAPACK User’s Guide. SIAM, Philadel-
phia, PA, 1992.

Z. Bai and J. Demmel. Design of a parallel nonsymmetric eigen-
routine toolbox, part i. In Proceedings of the Sizth SIAM Confer-
ence on Parallel Processing for Scientific Computing. STAM Press,
1993.

Z. Bai, J. Demmel, J. Dongarra, A. Petitet, H. Robinson, , and
K. Stanley. The spectral decomposition of nonsymmetric matrices
on distributed memory parallel computers. To appear.

Z. Bai, J. Demmel, and M. Gu. Inverse free parallel spectral di-
vide and conquer algorithms for nonsymmetric eigenproblems. To
appear in Numerische Mathematik.

R. Barrett, Michael Berry, Tony F. Chan, J. Demmel, J. Donato,
J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. van der
Vorst. Templates for the Solution of Linear Systems. SIAM,
Philadelphia, 1994.

M. Berry, B. Hendrickson, and P. Raghavan. Sparse matrix re-
ordering schemes for browsing hypertext. Lec. Appl. Math., Amer.
Math. Soc., 1995. To appear.

T. F. Chan and T. Mathew. Acte Numerica, chapter Domain
Decomposition Algorithms, pages 61-143. Cambridge University
Press, 1995.

36

[10]

[11]

[12]

[16]

[17]

18]

T. F. Chan and J.-P. Shao. Optimal coarse grid size in domain
decomposition. J. Comp. Math., 12(4):291-297, 1994.

T. F. Chan and J.-P. Shao. Parallel complexity of domain decom-
position methods and optimal coarse grid size. Parallel Computing,

1994.

T. F. Chan, B. Smith, and J. Zou. Multigrid and domain decom-
position methods for unstructured meshes. In Proceedings of the
Third International Conference on Numerical Methods and Appli-
cations, 1994.

T. F. Chan, B. Smith, and J. Zou. Overlapping schwarz methods
on unstructured meshes using non-matching coarse grids. Techni-
cal Report 94-8, Department of Mathematics, University of Cali-
fornia, Los Angles, 1994.

T. F. Chan and H. A. van der Vorst. Approximate and incomplete
factorizations. Technical Report 94-27, Department of Mathemat-
ics, University of California, Los Angles, 1994.

T. F. Chan and J. Zou. Domain decomposition and multigrid
algorithms for elliptic problems on unstructured meshes. Technical
Report 93-4, Department of Mathematics, University of California,
Los Angles, 1993.

T. F. Chan and J. Zou. Domain decomposition algorithms for non-
symmetric parabolic problems on unstructured meshes. Technical
Report 94-22, Department of Mathematics, University of Califor-
nia, Los Angles, 1994.

J. Choi, J. Dongarra, S. Ostrouchov, A. Petitet, D. Walker, and
R. C. Whaley. A proposal for a set of parallel basic linear algebra
subprograms. Computer Science Dept. Technical Report CS-95-
292, University of Tennessee, Knoxville, TN, May 1995. (LAPACK
Working Note 100).

P. Ciarlet and F. Lamour. An efficient low cost greedy graph par-
titioning heuristic. Technical Report 94-1, Department of Mathe-
matics, University of California, Los Angles, 1994.

37

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

P. Ciarlet and F. Lamour. On the validity of a front-oriented
approach to partitioning large sparse graphs with a connectivity
constraint. Technical Report 94-37, Department of Mathematics,
University of California, Los Angles, 1994.

J. Demmel and K. Stanley. The performance of finding eigenval-
ues and eigenvectors of dense symmetric matrices on distributed
memory computers. In Proceedings of the Seventh SIAM Confer-
ence on Parallel Processing for Scientific Computing. STAM Press,
1995.

J. Dongarra, J. Du Croz, 1. Duff, and S. Hammarling. A set of
level 3 basic linear algebra subprograms. ACM Transactions on

Mathematical Software, 16:1-17, 1990.

J. Dongarra and R. C. Whaley. A user’s guide to the blacs v1.0.
Computer Science Dept. Technical Report CS-95-281, University
of Tennessee, Knoxville, TN, March 1995. (LAPACK Working
Note 94).

J. J. Dongarra. LAPACK Working Note 34: Workshop on the
BLACS. Computer Science Dept. Technical Report CS-91-134,
University of Tennessee, Knoxville, TN, May 1991. (LAPACK
Working Note #34).

J. J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson. An
extended set of Fortran basic linear algebra subroutines. ACM
Transactions on Mathematical Software, 14(1):1-17, March 1988.

J. J. Dongarra and R. A. van de Geijn. Two-dimensional basic lin-
ear algebra communication subprograms. Computer Science Dept.
Technical Report CS-91-138, University of Tennessee, Knoxville,
TN, October 1991. (LAPACK Working Note 37).

J. J. Dongarra, R. A. van de Geijn, and D. W. Walker. Scala-
bility issues affecting the design of dense linear algebra library.
Journal of Parallel and Distributed Computing, 1994. Accepted
for publication.

38

[27] J.J. Dongarra and D. W. Walker. Software libraries for linear alge-
bra computations on high performance computers. SIAM Review,
1994. Accepted for publication.

[28] B. Dykaar. Macroscopic groundwater flow and transport coeffi-
cients. Ph. D. Thesis Proposal, Stanford University, 1993.

[29] W. S. Edwards, L. S. Tuckerman, R. A. Friesner, and D. C.
Sorensen. Krylov methods for the incompressible navier-stokes
equations. Journal of Computational Physics, 1993. To appear.

[30] The MPI fo-
rum. MPI: A message passing interface standard (version 1.1).
Available electronically from http://www.mcs.anl.gov/mpi/.

[31] W. Gropp, E. Lusk, and A. Skjellum. Using MPI. The MIT Press,
1994.

[32] E. F. Hayes, P. H. Pendergast, Z. Darakjian, and D. C. Sorensen.
Scalable algorithms for three-dimensional reactive scattering: eval-
uation of a new algorithm for obtaining surface functions, 1993.
Submitted to the Journal of Computational Physics.

[33] M. T. Heath and P. Raghavan. Distributed solution of sparse
symmetric positive definite systems. In Scalable Parallel Libraries
Conf., pages 114-122, Los Alamitos, CA, 1994. IEEE Computer
Society Press.

[34] M. T. Heath and P. Raghavan. Performance of a fully parallel
sparse solver. In Scalable High Performance Computing Conf.,
pages 334-341, Los Alamitos, CA, 1994. IEEE Computer Society
Press. Full version submitted to International Journal of Super-
computer Applications.

[35] M. T. Heath and P. Raghavan. A Cartesian nested dissection
algorithm. SIAM J. Matriz Anal. Appl., 16(1):235-253, 1995.

[36] J. Jaffre and J.-L. Vaudescal. Arnoldi’s method for two-group
neutron diffusion. In Proceedings of the International Conference

on Mathematical Methods and Supercomputing in Nuclear Appli-
cations, pages 19-23, 1993.

39

[37]

[43]

[44]

[45]

M. N. Kooper, H. A. van der Vorst, S. Poedts, and J. P. Goed-
bloed. Application of the implicitly updated arnoldi method with
a complex shift and invert strategy in mhd. Technical report,

Institute for Plasmaphysics, FOM Rijnhuizen, Nieuwegein, The
Netherlands, 1993.

C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic linear
algebra subprograms for Fortran usage. ACM Trans. Math. Softw.,
5:308-323, 1979.

Tsung L. Li and Kelin J. Kuhn. Finite element solution to quan-
tum wells by irreducible formulations. Technical report, University
of Washington, Seattle, 1993.

M. A. Nasir, W. C. Chew, P. Raghavan, and M. T. Heath. A
comparison of computational complexities of hfem and abc based
finite element methods. In Proc. IEEE APS Internat. Symp., pages
447-450, June 1994. Full version submitted to IEEE Trans. on
Antennas and Propagation.

S. W. Otto, M. Snir, S. Huss-Lederman, D. W. Walker, and J. J.
Dongarra. MPI: The Complete Reference. The MIT Press, 1995.
Should be available by the end of 1995.

B. Parlett and I. Dhillon. Fernando’s method for finding the most
redundant equation in a tridiagonal system. Department of math-

ematics, cpam report 635, University of California at Berkeley,
1995.

P. Raghavan. Distributed sparse Gaussian elimination and orthog-

onal factorization. SIAM J. Sci. Comput., 16(6):1462-1477, 1995.

P. Raghavan. Efficient parallel triangular solution with selective
inversion. Technical Report CS-95-314, Department of Computer
Science, University of Tennessee, Knoxville, TN 37996-1301, Dec
1995. Submitted to STAM J. Sci. Comput.

P. Raghavan. Parallel ordering using edge contraction. Technical
Report CS-95-293, Department of Computer Science, University
of Tennessee, Knoxville, TN 37996-1301, May 1995. Submitted to
Parallel Computing.

40

[46]

[47]

[50]

[51]

B. Smith. Extensible pde solvers package users manual. Technical
report, Department of Mathematics, University of California, Los
Angeles, 1995.

H. A. Smith, D. C. Sorensen, and R. K. Singh. A lanczos-based
eigensolution technique for exact vibration analysis. Interna-
tional Journal for Numerical Methods in Engineering, 36:1987—
2000, 1993.

D. C. Sorensen. Implicit application of polynomial filters in a k-
step Arnoldi method. SIAM Journal on Numerical Analysis (Se-
ries B), 28:1752-1775, 1992.

D. C. Sorensen, Z. A. Tomasic, and P. A. Vu. Algorithms and soft-
ware for large scale eigenproblems on high performance computers.
In Adrian Tentner, editor, Proceedings of High Performance Com-
puting 93, pages 149-154. Society for Computer Simulation, 1993.

H. A. van der Vorst and T. F. Chan. Linear system solvers: sparse
iterative methods. Technical Report 94-28, Department of Math-
ematics, University of California, Los Angles, 1994.

J.-L. Vaudescal, 1993. Private communication.

[52] K. Yelick and S. Chakrabarti. Modeling the benefits of mixed

data and task parallelism. In Proceedings of the 1995 Symposium
on Parallel Algorithms and Architectures, 1995.

41

